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We construct approximate solutions of the linearized Boltzmann equation for a 
gas outside of a completely absorbing sphere, a simple model for a liquid 
droplet growing in a supersaturated vapor. The solutions are linear combina- 
tions of two Chapman-Enskog-type solutions, which carry heat and particle 
currents, and boundary layer eigenfunctions that decay with increasing distance 
from the sphere on a distance of the order of a mean free path. To construct the 
boundary layer eigenfunctions and the linear combination that satisfies the 
boundary condition at the sphere, we expand the solution in Burnett functions 
and truncate the resulting system of equations for the expansion coefficients. For 
one particular truncation prescription, which generalizes Grad's 13-moment 
scheme, good initial convergence with increasing order of truncation is obtained 
for both moderately small and large radii of the sphere; the results for small 
radii extrapolate smoothly toward the known limit of zero radius. We present 
results for the reaction rate (the particle current arriving at the sphere divided 
by the density at infinity) and for the density and temperature profiles in the 
boundary layer. The explicit calculations are carried out for Maxwell molecules, 
but the method appears to be suitable for more general intermolecular poten- 
tials. 

KEY WORDS: Boltzmann equation; kinetic boundary layer; moment expan- 
sions; droplet growth; Maxwell molecules. 

1. I N T R O D U C T I O N  

T h e  sys tem c o n s i d e r e d  in this p a p e r  is a n o t  t o o  dense,  o n e - c o m p o n e n t  gas, 

desc r ibed  by the  B o l t z m a n n  e q u a t i o n ,  s u r r o u n d i n g  an  a b s o r b i n g  sphere.  

T h e  sphere  can  be t h o u g h t  of  as a l iqu id  d rop l e t  o r  c rys ta l l i te  p l aced  in a 

h igh ly  s u p e r s a t u r a t e d  v a p o r ,  bu t  we shall  n o t  a t t e m p t  to desc r ibe  c o m -  

p l i ca t ions  tha t  occu r  in this ac tua l  phys ica l  sys tem,  excep t  brief ly in the  
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concluding section. Far away from the sphere, the gas is kept in thermal 
equilibrium; hence, the flow not too close to the sphere can be described 
by the Navier-Stokes equations. These can be derived from the Boltzmann 
equation by means of the Chapman-Enskog procedure. (~ 3) However, this 
procedure is based on the assumption that the gradients in the 
hydrodynamic variables are small on the scale of a mean free path, and 
that the distribution functionf(v,  r, t) for the velocities v and positions r of 
the gas molecules is everywhere close to (local) thermal equilibrium. In 
particular the latter condition is certainly violated near the surface of the 
sphere, where there are no particles with outwardly-directed velocities. 
Thus, in a layer around the sphere, the Chapman-Enskog procedure. 
breaks down, and we have to go back to the Boltzmann equation: there 
appears a kinetic boundary layer. 

Kinetic boundary layers occur in various problems in kinetic theory, 
in particular near walls that have a velocity (4~ or temperature (5"6~ different 
from the bulk of the gas. They can be studied by moment expansion and 
by variational methods. (7'S~ Most treatments thus far have been confined to 
planar or cylindrical geometries, (9~ however. In recent years, a number of 
papers have appeared (le~13) on the problem of an absorbing sphere in a gas 
of Brownian particles moving in a stationary background. We mention in 
particular a paper by Kumar and Menon (12) using the moment expansion 
method, and one by Widder and Titulaer (13~ using a refinement of this 
method to obtain a systematic expansion in the inverse radius of the 
sphere. 

In the present paper we study the possibility of extending and modify- 
ing these treatments to apply them to the Boltzmann case. Since the paper 
is in part a feasibility study, we confine ourselves to the linearized 
Boltzmann equation. Linearization may appear to be unrealistic for the 
completely absorbing sphere; it can be justified, however, for the case of a 
droplet in a moderately supersaturated vapor. As we shall show in Sec- 
tion 5, the solution of the latter case can be obtained very simply from the 
one for a completely absorbing sphere. As an additional simplification, we 
shall confine ourselves in the actual calculations to the case of Maxwell 
molecules. This has the advantage that the eigenfunctions of the Boltzmann 
collision operator are known explicitly. Compared to the even simpler 
BGK model, the Maxwell model has the advantage that the Prandtl 
number has the rather realistic value 2/3; this is relevant since heat currents 
will turn out to play an important role in the solution we obtain. 

In Section 2 we rewrite the stationary Boltzmann equation in spherical 
geometry as a set of coupled equations for the expansion coefficients in 
terms of the Burnett functions. (14~ This hierarchy of equations turns out to 
have boundary layer solutions, which decay with definite decay lengths (of 
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the order of a mean free path) with increasing distance from the sphere, as 
well as four constant or slowly decaying solutions, which approach 
Chapman-Enskog-type solutions far away from the sphere. Some details of 
the derivation and some theorems about the spectrum of decay lengths are 
given in an Appendix. 

In Section 3 we describe the construction of a linear combination of 
these fundamental solutions that obeys the boundary conditions at infinity 
and at the surface of the sphere. To obtain results from the infinite 
hierarchy of coupled moment equations, the hierarchy must be truncated; 
two alternative truncation schemes are discussed. In Section 4 we present 
some explicit results. We see that one of the truncation schemes, similar to 
the ones customarily used in the literature, yields results that rapidly 
become useless as the sphere radius R decreases and becomes comparable 
to the mean free path. The other scheme, designed as a generalization of 
Grad's 13-moment method, (15) yields results that stay reasonable down to 
small radii (where they eventually break down for numerical reasons) and 
connect smoothly to the known limit for R $ 0. The physical picture is com- 
pletely different from the Brownian motion case. In a freely streaming gas 
the particle transport is convective rather than diffusive. Hence, the total 
current arriving at the sphere is proportional to R 2 for large spheres, rather 
than to R as in the Brownian case; the coefficient of R ~ depends sensitively 
on the structure of the boundary layer, and therefore on details of the inter- 
molecular potential; it cannot be obtained from hydrodynamics. In the 
concluding section we discuss some limitations of our treatment and some 
possibilities to extend it to more general, and more realistic, cases. 

2. T H E  F U N D A M E N T A L  B O U N D A R Y  LAYER S O L U T I O N S  

In this section we consider special solutions of the linearized 
Boltzmann equation (2'16) for a gas of point particles of mass m, 

~ + v . V  r q~(v, r, t) = no~oq~(v, r, t) (2.!) 

The function q~ describes the deviation of the one-particle distribution 
function f(v,  r, t) from a reference equilibrium state, 

f(v,  r, t)=nofM(v; To)J1 + q0(v, r, t)] (2.2) 

where fM(v; To) is the Maxwell distribution at the temperature To; no~  o is 
the linearized Boltzmann operator. (16) We are interested in stationary 
problems with spherical symmetry; hence 45 can be written as 

q)(v,r,t)=q~(v,#,r); / ~ = ~ - f  (2.3) 
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Moreover, from now on we shall use dimensionless units, with v measured 
in units of the thermal velocity 

Vth = (mfl) 1/2_ (kTo/m)l/2 (2.4a) 

and r measured in terms of the mean free path l, for which we use the 
definition 

l= q(mfl)l/2/mno (2.4b) 

where t/ denotes the shear viscosity. The linearized Boltzmann equation 
then becomes (m 

v #~r + - ~ ~(v,#,r)=flq~oq~ (2.5) 
r 

We now write q5 as a linear combination of the Burnett functions 
~',k(v, #) (n, k = 0, 1, 2,...) 

qS(v, #, r) = ~ A,k(r) O,k(v, #) (2.6) 
n,k 

with 

Onk(v, #) -.,,,k~- Ar ,,he~, k +In) m(V2/2 ) Pk(#) (2.7) 

where ~(n) and Pk are the Sonine and Legendre polynomials, respec- ~ k + l / 2  

tively, and 

N,~ = [2"n! (2k + 1)/(2k + 2n + l ) ! [ ]  1/2 (2.8) 

The Burnett functions are complete and satisfy the orthogonality relations 

2~ f d# f dvv2fM(v) Onk(V,#)O,,k,(V,#)=a,,,ake, (2.9) 

The functions ~oo, @10, and ~ol are eigenfunctions of ~2o with eigenvalue 
zero; they are connected with the excess density, the excess kinetic energy, 
and the radial component of the mean velocity, respectively. For  the special 
case of Maxwell molecules, the other Onk are eigenfunctions of N0 as 
well(IV, aS): 

~o~nk(v, #) = --COnk~nk(V, #) (Maxwell) (2.10) 

with C0o2= (fir/)-1; all other 09nk/COo2 are numbers obtainable by simple 
quadratures. (18'19~ In the remainder of this paper we confine ourselves to 
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the case of Maxwell molecules, though all our procedures can be extended 
to the general case without difficulty. 

Substitution of (2.7) and (2.10) into (2.5), and use of the properties of 
the Burnett functions, leads to a set of coupled equations for the A,~, (~z 17) 

k+2\[-/  2 n + 2 k + 3  \1/2 
( k + l )  ~r+~- - )L t (Zk+3) (Zk+l ) )  A,,.k+l 

(2k + 3)(2k + 1) A, t,k+l 

k -1" ]~ (  2n-t-2k-I-1 )1/2 
+ k  dr r /L\(2k+i)-~k--1) 
_ (  2(n +1)_ ~ 1,k 1] k(2k+ 1)(2k- i i J  1/2 A,+ 

A,,,k 1 

- C O ' K A , ~  k (2.11) 
(-0O2 

[-Different coefficients, e.g. in ref. 12, are caused by a scaling different 
from our convention (2.4).-] Following Kumar and Menon, (12) we look for 
special solutions of the form 

A,k(r)=,,(q) ( 2 ~ ~,k \~zqr/ Kk+l/z(qr) (2.12) 

where Kk + 1/2(qr) denotes the modified Bessel function. This ansatz satisfies 
(2.13), provided q and ,,(q) satisfy the generalized eigenvalue equation ~ n k  

{ V( 2n+2k+3  )l/2n(q) 
q (k+ l) Lk(2/7+~)(2k+ l) ~.,k+~ 

__( 2n ,~ 1/2 q,(q) ] 

k ( 2 k + 3 ) ( 2 k + l ) /  "" 1,k+lj 

[ (  2n+2k+ 1 )l/2n(q) 
+ k  kk(2k+ 1)(2k-  1)/ U n ' k - - 1  

( 2(n + 1) ) 1/2 ct(q) 

- \ ( 2 k + l ) ( 2 k - 1 ) J  ~.+~,k x j j  

- -  ( D n k  ~ ( q )  (2.13) 
~ n k  (/)02 
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which can be written more compactly as 

q B - a ( q ) = A - a  (q) (2.14) 

where  a (q) is a vector containing the components ~(q) ~ n k  " 

The eigenvalue problem (2.14) is discussed more fully in the Appendix. 
There we find that there is a fourfold degenerate eigenvalue q = 0, and that 
all other eigenvalues are real and semisimple. From the invariance of (2.13) 
under the transformation 

"(q) -"+ ( - -  1 )k ,-,(q) (2.15) q ~ - q ;  ~nk ~n~ 

one sees that they occur in pairs of opposite sign. Two of the eigenvectors 
belonging to q = 0  are trivial: they have only aoo and alo, respectively, 
different from zero and correspond to a uniform change in density or 
temperature. There are two associated vectors that can be obtained by 
substituting, instead of (2.12), 

1 ( 2 k -  1)[! 
Ank(r)  = ank gk(r); g~ = 7; gk(r )  -- rk+ 1 (2.16) 

One finds that the coefficients a01 and al~ can be chosen freely. The 
remaining coefficients turn out to be 

( 8 ~  '/2 
aoo = \~-~] a l l  

02--2o (k ~> 2) 
ao - (2k 1) ao,  1-\2-TUi- ) al, , 

alo - 

a l k  = - -  

a n k  = 0 

2 
X~i-5 a l l  

L 1 cojk (2k + 1 )(2k - 1 ) 

for n~>2 

1/2 
al ,k 1 ( k ~ > 2 )  (2.17) 

Thus, there are two independent solutions: one, with a01 = 1, all =0,  
describes a radial particle flow; the other, with an  = 1, a0~ = 0, describes a 
radial heat flow. Only the latter is associated with modifications of particle 
density (aoo) and kinetic energy density (alo). Note, however, that the aol 
solution does contain components ank with n + k > 1, which become more 
prominent for small r; these are associated with entropy production, as 
should be expected, since the velocity field is not shear-free. 
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In conclusion, we have constructed in this section four types of special 
solutions of the linearized Boltzmann equation: 

(a) Solutions for which the Ank(r ) in (2.6) are given by (2.12) with 
q = q i>  0 and qi and a (q') obeying (2.13). These solutions, further denoted 
by ~l+~(v, #, r), decay like r le-qir for r ~  ~ .  

(b) Similar solutions ~bl-)(v,~,r) with q = - q ~ ;  these solutions 
increase exponentially for r ~ ~ .  

(c) The homogeneous solutions ~ d =  ~P0o and q~ = ~ o ,  correspond- 
ing to excess density and excess kinetic energy. 

(d) The solutions ~po(V,/~, r) and ~bhc(V, #, r) obtained by putting 
a0~ = 1, a~x = 0 and all = l ,  ao l  = 0,  respectively, in (2.17). These solutions 
decrease like powers of r-~ at r ~ ~ and they carry a particle and a heat 
current, respectively. 

3. B O U N D A R Y  P R O B L E M S  A N D  T R U N C A T I O N  S C H E M E S  

The aim of the present paper is the construction of a solution of (2.1) 
that vanishes for r ~  o% which means that f(v,  p, r) approaches the 
reference equilibrium state there, and that obeys a prescribed boundary 
condition at the surface of a sphere with radius R for particles leaving the 
sphere. The simplest such boundary condition, which is the only one we 
shall consider in detail, is the one for a completely absorbing sphere, (9) 

fa (v ,# ,R)=nofM(V)[ l+qSa(v , l~ ,R)]=O for # > 0  (3.1) 

In view of the boundary condition at r ~  o% we look for a solution 
constructed out of solutions of types (a) and (d) from the list in the last 
section: 

~a(v,#,r)=C(R)epc+D(R)~'hc+Zd,(R)el  +~ (3.2) 
i 

As yet there is no proof that a solution of the form (3.2) satisfying the 
boundary condition (3.1) exists, and that it is unique. We shall, however, 
assume this is the case. A few remarks on this question will be made in the 
concluding section. 

Moreover, the q~l +) are not known explicitly. Approximate solutions 
can be obtained, however, by truncating the infinite set of equations (2.13). 
The so-called LNP K approximations (1~ are obtained by putting -q(q) = 0 for ~ n k  

n > N or k > K. We shall use as one of our truncation schemes 

QN=-LNPN: " l ( q ) - - O  for n > N  or k > N  (3.3) ~ n k  - -  

8 2 2 / 5 9 / i - 2 - 2 9  
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As an alternative, we shall also consider the diagonal truncations 

DN: ,,(ql = 0 for n + k > N; ,,(q) = 0 (3.4) ~ n k  ~ N O  

[-The last condition is not essential; it has the advantage that Grad's 
13-moment approximation is equal to D2.] The choice (3.4) offers the 
advantage that, except for a (q) at most one term on the lhs of (2.13) is N - - I , I ~  

dropped. For  both truncation schemes one obtains a rather regularly 
spaced spectrum of q values between a lower limit that has reached about 
0.23 for Q15 or D:2, but is still slightly decreasing with N, and an upper 
limit that still increases without apparent bond for those ranges of N. The 
spectrum is roughly similar to the one obtained in ref. 5 by a method using 
separate expansions of ~(v, p, r) for positive and negative #. The individual 
q values do not converge very well with increasing N; this behavior is 
similar to the one obtained by a similar scheme (2~ for the one-dimensional 
BGK model, where the actual spectrum is known to be continuous. For 
most N there are one or more eigenvectors with infinite q [i.e., B- a (q) = 0, 
A . a ( q ) ~ 0  in the truncated version of (2.14)]; the number of positive 
eigenvalues is always exactly two less than the number of a,k with odd k 
that are considered in the schemes DN or QN. As we show in the Appendix, 
this is the highest possible number of positive q for each scheme. This latter 
feature ensures that the coefficients in (3.2) are determined uniquely when 
we include all finite qi obtained in the scheme DN or QN in the sum in 
(3.2), replace ~po and ~hc by their truncation according to DN or QN, and 
replace (3.1) by the Marshak-type condition (21) 

i f  ~ o d# v2 dv f(v, l~, R) O,,zk + ~(v, l~)=O (3.5a) 

with 

n ~< N, 2k + 1 ~< N for QN (3.5b) 

n + 2k + 1 ~< N for O N (3.5c) 

Since the ~,k(v, #) with odd k alone are complete on the half range 
0 < # <  1; 0 < v <  o% the condition (3.5) becomes equivalent to (3.1) for 
N--* oo. Substitution of (3.1) and the truncation o f  (3.2) into (3.5a) leads 
to a number of conditions on the elements of the vector d = (C, D, dl ..... d,) 
that can be written in the general form 

M . d + e = O  (3.6) 

where the rows of M contain the half range moments (3.5a) of the trun- 
cated fundamental solutions qsvc, q~hc, and q~l +), and e contains the corre- 
sponding moments of the equilibrium distribution fM(V). The coefficient 
vector d is then obtained from (3.6) by a matrix inversion. 
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4. RESULTS AND DISCUSSION 

The procedure outlined in the preceding section was carried out for 
several sphere radii R and for several truncation schemes QN and DN. The 
most important quantity to be derived from those results is the reaction 
rate coefficient k, i.e., the total number of particles absorbed by the sphere 
per unit time divided by the density at infinity. From (3.2) and (2.16) one 
finds 

41rR 2 - 4 ~  
k no(mfl)l/2fdv(-vl~)f(v, tz, R)---(mfl)l/2 C(R) (4.1) 

where we restored the factor (m~) 1/2 to obtain k in regular units. The limit 
of k for R $ 0 is easily obtained: spheres with radii very small compared to 
l do not influence the distribution of incoming particles to any appreciable 
extent, so we may put 

f ( v , p , R ) ~ n o f ~ ( v ) O ( - # )  for R,L0 (4.2) 

and k approaches the kinetic limit 

k k i .  = 4~zR2(2~m/?) - 1/2 (4.3) 

In Fig. 1 we present our results for the ratio 

k/kkm = - (2re)1/2 C(R ) (4.4) 

as a function of log(R/l) for several Du and QN truncation schemes. For  
small R and large N the determination of the coefficients in (3.2) becomes 
unreliable, since the elements of M in (3.6) contain the Bessel functions 
Kk+ 1/2(R) and the gk(R) of (2.16), which for large k and small R become 
very large. The curves in Fig. 1 are continued toward small R until the 
ensuing numerical errors no longer allow one to satisfy (3.6) to an accuracy 
better than 1 0  - 6  . 

In Fig. 1 there is a clear difference between the O N and QN 
approximants. The former converge quickly for not too small R, and the 
values at the point where numerical uncertainties become too large are 
close to the theoretical limit k(R)= kki~(R) for not too small N. The QN 
approximants converge much more slowly and they are still far away from 
the theoretical limit at low R. 

For  large R the values for k are not too much different in  the two 
schemes; the values UV(R) in the O u scheme depend more smoothly on N, 
and they can be extrapolated empirically according to 

kU(R) = k~(R) + ~N ~ (4.5) 
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The convergence exponent 6 varies from 6 - 1.40 for R = 1 0  6 to 6 -- 1.30 
for R = 10. The dependence of kU(R) on R for log R/> 0.5 can be fitted well 
by an expression of the type 

R-2kN(R) N N 1 N - - 4  = k  o +k~R +kNR-Z+kNR-3+k4  R (4.6) 

The extrapolation procedure (4.5) can be used to obtain an estimate for the 
k~;  this leads to our best estimate 

k ( R )  _ 1.6523-2.444R -1+5._7R 2 (R~> 10l) (4.7) 
k k i n ( R  ) - _ 

where the estimated error is about 3 units in the underlined decimal. 
When we compare the result (4.7) with the analogous result for 

Brownian particles, (13) two differences are apparent. First, the reaction rate 
remains of order R 2 for all R, whereas it becomes of order R for large R 
in the Brownian case. This decrease in the Brownian case is caused by the 
friction the Brownian particles experience when moving through the back- 
ground gas; to maintain a flow, a concentration gradient must be main- 
tained, and the density near the absorbing sphere is of order l/R compared 
to the one at infinity. A one-component gas can flow without any density 
gradient, as we saw in discussing (2.17), and resistance to flow occurs 
mainly in the boundary layer, where 0nk with n + k ~> 2 become important. 
This is connected with the second main difference: the leading term in (4.7) 
depends sensitively on the structure of the boundary layer [the D2 
approximation, which contains no ~I +) in the ansatz (3.2), would yield 
k(oo)=(16/9)kkin], but does not contain any transport coefficient, 
although the precise value of course depends on ratios of the ~onk. In the 
Brownian case the leading term can be determined from hydrodynamics 
and is proportional to the diffusion coefficient. 

In addition to the results for k(R), our calculations produced results 
for the distribution function itself. Some of them can be found elsewhere(23); 
here, we merely present a few illustrative aspects. In Fig. 2 we show the 
density profile 

n(r) = f dv f(v, I~, r) (4.8) 

in the boundary layer for a few D N and for R = 10/. In the higher DN we 
find a steep decline of n(r), but the profile is less steep than in the 
analogous Brownian case. The convergence with increasing N is more rapid 
well away from the surface, where the exponent in a fit of type (4.5) is 1.3, 
than immediately at the surface, where the exponent is 0.6. The latter value 
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Fig. 2. The particle density n(r) near the surface of a completely absorbing sphere of radius 

R = 10/in various approximations. 

is roughly the same as in the Brownian particle case. Attempts to fit 
n ( r - R )  as a function of ( r - R )  gave no indications for a nonanalytic 
( r - R )  dependence, though our method is not sensitive enough to detect 
logarithmic singularities. 

In Fig. 3 we present the temperature profile in the boundary layer, 
given by 

3 
n(r) kT(r) = 1 f ~ m dv VZf(v, ~, r) (4.9a) 

with 

V = v - u(r); n(r) u(r) = f dv if(v, #, r) (4.9b) 

Of course, u(r) is directed in the negative r direction. In terms of the A~k(r), 
T(r) can be written as 

T(r) l + Aoo(r)-(2/3)m Alo(r) �89 2 

To 1 + Aoo(r) [1 + Aoo(r)] 2 
(4.10) 

In Fig. 3 we also present the radial and transverse parts Tr(r) and T,(r) of 
the temperature, obtained by taking only the radial and transverse corn- 
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Fig. 3. (a) The temperature profile near a totally absorbing sphere of radius R = 10/ in 
various approximations. (b) The division of temperature into a radial and a transverse part 
(see text) for the D 8 approximation. 
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ponents of V 2 in (4.9a), and changing the 3/2 into 1/2 and 1, respectively. 
One sees that the rather small effect in T(r) is the result of much larger 
effects, of opposite sign, in Tr(r) and Tt(r ). The much higher values for 
Tt(r) are the effect of collisions that partly transform the directed kinetic 
energy associated with the systematic velocity u(r) into undirected kinetic 
energy in the transverse components of v. The curves in Fig. 3 also clearly 
demonstrate that the gas in the boundary layer is far from thermal 
equilibrium. 

Finally, we provide in Table I some numerical values for k(R)/kkin(R) 
and for the ratio D(R)/C(R) in (3.2), i.e., for the ratio between heat and 
particle current. The "need" for an additional heat current is clear from 
Fig. 3: clearly, the average kinetic energy of an absorbed particle exceeds 
the thermal value (3/2)kTo, at least when the directed kinetic energy is 
also taken into account. The exact value for the ratio D/C in the limit of 
small radii is obtained by considerations analogous to the ones given 
before (4.2): 

D(R)/C(R)= 1/x/~=0.316... for R J,0 (4.11) 

On the other hand, one expects in the limit of large radii 

D(R)/C(R) = const/R for R ~ ~ (4.12) 

where the constant in D2 equals 3(5zt)1/2/16 (=0.743...). Table I shows that 
for small radii the D2 approximation becomes completely inadequate, 
whereas for large radii the correction due to the boundary layer amounts 
to about 7% for the reaction rate coefficient and to merely 2% for the 
ratio D/C. 

Table I. V a l u e s  for the Reaction Rate Coeff ic ient  k and the Ratio D[C 
between Heat and Particle Current in Various Approximations 

for Several Values of the Radius R 

k/kkm D/C 

log(R/l) D 2 D 8 E x t r a p o l a t e d  a D 2 D 8 

- 1  0.706 - -  - -  1.401734 - -  

0 0.973 1.122 1.117 0 .642238 0.287473 

1 1.558 1.475 1.461 0 .078424 0 .075176 

2 1.751 1.637 1 . 6 2 8  0.007491 0 .007617 

3 1.775 1.658 1.650 0 .000744 0 .000758 

a T h e  e x t r a p o l a t e d  va lues  a re  o b t a i n e d  by  fits of  type (4.5). 
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5. C O N C L U D I N G  R E M A R K S  

A droplet in a supersaturated vapor does not merely absorb particles 
impinging upon it; it also emits molecules into the gas. Absorption and 
emission balance when the gas has the saturation density ns(R), which 
depends on R due to surface tension effects. (~4) Hence a more realistic 
boundary condition instead of (3.1) is 

f ( v ,  #, R)  = ns(R) fM(V) for # > 0 (5.1 

This boundary condition, together with the one at r ~ 0% 
satisfied by 

f ( v ,  #, r) = fM(v){ns  + (no -- n~.)[l + qS(v, ~, r)]  } 

is clearly 

(5.2) 

with q~a the solution discussed in the preceding sections. The solution (5.2) 
has the additional advantage that, for n o not too different from n s, it does 
not differ as much from the equilibrium distribution as fa(v, it, r); hence, 
the use of the linearized Boltzmann equation is better justified. We note in 
passing that (5.2) with n, > no can be used to describe the situation around 
an evaporating superheated droplet. 

Our treatment is also generalizable without much difficulty to more 
general boundary conditions, in particular to partial absorption and to 
emission with a distribution corresponding to a temperature different from 
T o . This is of particular importance for the case of growing droplets, where 
the heat of condensation may cause appreciable temperature differences 
between the droplet and the surrounding gas. We shall not discuss these 
more general boundary conditions any further, since they will be subject of 
a forthcoming paper. (25) 

The restriction to Maxwell molecules was made mainly for calcula- 
tional convenience. For more general potentials the matrix A in (2.14) is 
no longer a diagonal one, but it remains symmetric, and the conclusions in 
the Appendix still hold. We do not expect qualitative differences in the 
solution; there is no assurance, however, that the results in the D u trunca- 
tion scheme will approach the known limit for small R equally well. 

The formal limiting case R $ 0 of course does not refer to the very first 
stages of nucleation of a droplet from the vapor. For  droplet radii near the 
critical value for droplet growth our boundary conditions are much too 
simple. However, for not too high ns, there is a range of radii large com- 
pared to the critical radius (typically about 10 A) and still small compared 
to the mean free path (typically of the order of 1000 ,~), where the limiting 
form (4.3) can be expected to hold. The situation may be different for high 
n~, and in particular near the critical point, where the densities of vapor 
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and liquid become comparable. In that region the treatment of the droplet 
surface as a sharp mathematical surface also becomes problematic. Finally, 
the use of stationary solutions of the Boltzmann equation in our treatment 
presupposes that the velocity with which the droplet grows is small com- 
pared to the thermal velocity in the vapor. Since the gas flow arriving at 
the surface has a mean velocity comparable to the thermal velocity in our 
case (where the particle transport is convective), this requires an 
appreciable difference in density between liquid and vapor. 

As we remarked after (3.2), the existence and uniqueness of the solu- 
tions constructed in Section 3 have not been proved for our case. Rigorous 
proofs, based, e.g., on half range completeness theorems, exist for a number 
of one-dimensional problems: the Klein Kramers case (26) and the one- 
speed neutron transport equation(27); the BGK case is discussed in ref. 9. 
The success of our approximate procedure, in particular the smooth 
dependence of type (4.5) of various results on the number of moments, can 
be considered as evidence in favor of the half-space completeness conjecture 
for our problem. 

The main result of this paper is the demonstration that the Burnett 
moment expansion with the truncation prescription D N converges down to 
quite low values of the droplet radius, and that its results connect smoothly 
to the known limit of vanishing radius. The specific numerical results are 
certainly less significant, due to the assumption of Maxwell molecules and 
to several other simplifications, discussed earlier in this section; some of 
these simplifications will be removed in subsequent work. (25) On the other 
hand, we expect that our qualitative results on the adequacy of the D2 (or 
13-moment) approximation, and thus on the importance of "genuine" 
boundary layer effects, will have broader validity. 

A P P E N D I X  

In this Appendix we discuss the generalized eigenvalue problem (2.14) 
by extending the treatment proposed by Kumar and Menon (12) for the 
Brownian motion case. We arrange the coefficients in a (q) according to [we 
henceforth omit the index (q)] 

a t =  (aoo, aol, alo, a l l ;  ao2, a2o, a12,...) (A.1) 

where the arrangement of the further ank is immaterial for our purposes. If 
we denote the first four components by at and the remainder of the vector 
by a~, (2.14) for Maxwell molecules can be decomposed into the pair of 
equations 

q (Bl l "a l  + B12"a2 )=Al l "a l  (A.2a) 

q(Bt12 �9 a 1 q- B22" a2) = A22" a 2 (A.2b) 
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The matrix An  has the diagonal form (i~176 
0 0 (A.3) 

All = 0 0 

0 0 2/3 

For different potentials the nonzero matrix element may have a different 
value and there may be A12 matrices that connect an  to higher ank. In any 
case, one can conclude from (2.13) that the ax for q 4= 0 must have the form 

at1 = (aoo, 0, a~o, 0) (A.4) 

i.e:, the vectors a (q) for q ~ 0 carry no heat or particle current. Thus, the 
right-hand side of (A.2a) vanishes and one obtains for q 4 = 0 

a 1 = - B l l  1- B12"a 2 (A.5) 

{The matrix BI~, given by [-see (2.13)] ( 10 0) 
0 - , , / ~  0 

~11 = _ _ ~  0 ~ (A.6) 

o ,/US o 

turns out to be invertible.} Substitution into (A.2) gives (even for general 
potentials, since ax~ = 0!) 

q[-B22-- Bt12 �9 B H ' '  B12 ] �9 a2-= A22, a 2 (A.7) 

After substitution of the expression for B~2, one sees that the matrix 
B ' ~ 2 . B ~ . B 1 2  vanishes identically. The matrix A22 is diagonal with 
positive eigenvalues for Maxwell molecules, and symmetric and positive 
definite for general potentials. (16) Hence a 1/2 exists and is invertible, and ~22 
(A.7) can be transformed into the regular eigenvalue problem 

FA1/2 ~22 r a l / 2  ~ -11~ 1/2 (A.8) A22 I/2" B22" A221/2" L~22 ~ a2]  = " L~22 a2]  = q ~22 "a2 

Since J~221/2" B22" J~221/2 is real and symmetric, the eigenvalues q 1 are real 
and semisimple, and the associated eigenvectors are complete in the a2 
space. Moreover, none of the q can be zero. The transformation just carried 
out therefore shows that there are no generalized eigenvectors of (2.14) 
with q = 0 beyond the four already found in Section 2 [-strictly speaking, all 
this follows rigorously only for truncated versions of (2.14); for the infinite 
system one would have to prove self-adjointness of 1~22]. 
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It is clear f rom (2.13) that  922 has matrix elements only between ~gn~ 
and 0n,k, with k and k '  of different parity. On  the other hand, for a 
centrally symmetric potential,  A22 connects only 0nk with equal k parity. 
Hence B22 also connects Ong with different k parity. One now easily shows 
(e.g., by rearranging the components  of a2 in such a way that  all ank with 
odd k precede those with even k) that  the rank of  ~22 is at most  twice the 
number  of odd-k  or twice the number  of  even-k moments ,  whichever is 
smaller. Since in QN or D~v the number  of odd-k  moments  never exceeds 
the number  of even-k ones, the number  of nonzero  q values is at most  twice 
the number  of odd moments  in a2; since the q's occur in pairs of opposite 
sign, the number  of positive q's is thus at most  equal to the number  of odd 
moments  in a2, or  two less than the number  of odd moments  in 
a t =  (a '  1, a~) (note that  a~ contains two odd moments) .  As we reported in 
Section 3, this maximal  value is found in all of  our  calculations. 
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